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General issues

Cation sensing by chemosensors in vivo

Fluorescent signal is much more sensitive than coloring
(histochemical dyes)

Small sized sensor can diffuse through membranes

At present: calcium, magnesium, sodium, potassium,
zinc, copper, iron, cadmium, mercury

Sensor design: as discussed before
Detection: translate binding event into a readable signal



Binding / dissociation constants

M., |
* K,= [MJL]

* Many factors can affect the ligand coordination
sites (e.g. protonation etc.) 2 apparent stability

constant: [ML]
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e Here M’ and L refers to all kinds of M and L
species (free, protonated etc.)



Binding / dissociation constants

* The apparent K, can be altered in cellular
environment (eg. Fura-2 and Ca K; = 145 nM in
vitro and 371 nM in cells)

* The presence of complex equilibria makes it
difficult to determine selectivity of one ion over
another

 pM values refer to the —Ig[M], where [M] is the
free agueous metal ion concentration under
given conditions (e.g. pH, [M]._,; [L];ot )



pM relevancy

If pKa of the ligand’s donor atom is higher than pH of solution,
protonation can efficiently compete with binding

EDTA has larger K, for Zn than TPEN
EDTA (pK,, = 10.19) TPEN (pK,, = 7.12)

The apparent K, is more affected for EDTA, pM is lower (free Zn is
higher)

To judge ion selectivities the use of pM is highly recommended
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Signal transduction strategies

Internal charge transfer (ICT) systems

- Enable two-point (ratiometric) detection
Photoinduced electron transfer (PET) systems

— Signal evolution can be detected very sensitively
Excimers

— Mainly for hybridization studies

Energy transfer systems

— Hybridization

— Distance measurements

— Ca-sensing protein, protein-protein interactions



Photoinduced electron transfer
systems

Spacer separated receptor — fluorophore (donor-
acceptor)

Driving force of PET can be estimated: Rehm-Weller
equation AGg =E(D"/D)-E(A/A")-AE, +a,

Redox potentials of A, D, energy of the 0-0 transition and work related to
coulombic stabilization

Coordination changes donor potential therefore
increases AGg;

FE = ¢ /¢



Prediction




Examples
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Calcium selective indicators - modularity

- Calcium ruby



Calcium selective indicators - modularity

TABLE 18.2 Photophysical Data for Ca?*-Responsive Fluorescent Indicators

Compound Aabs (nm)“ Aem (nm) Eg (eV)? d¢ ®5(Cal™)d i log K
9a 368 (3.92) 440 3.09 0.0014 0.023 16 6.6

9 388 (4.43) 489 2.87 0.0011 0.1 92 6.5

9¢ 506 (5.17) 526 2.40 0.0051 0.183 3§> 6.4

9%d 553 (4.98) 576 2.20 0.03 0.10 ;’f iO
de 579 (5.00) 598 2.11 0.026 0.427 5 ; i
of 766 (5.30) 782 1.60 0.05 0.12 “s

Green: Autofluorescence of
flavoproteines (in mitochondria)

Red: Rhod-2 (free calcium)

Co-localization




Sodium selective indicators

Find optimal D/A match

Tuning with different EWGs
(11b)




Copper selective indicators

Copper is a soft LA
that does not alter the
donor’s potential very
much — fine tuning is
necessary




Internal charge transfer (ICT) sensors

* Receptor and signaling units are integrated

Guest induces shifted emission maximum

Ratiometric sensing
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Calcium ICT sensors

Abs and em are shifted

EM shift is much weaker
Due to dumpening of Ca




Fura-2 in cells
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Zinc ICT sensors

Zn
coordinates to
A - red
shifted
emission

(Znin
neurobiology)




Flucrescence ratio (558 nm/543 nm)
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Zinc ICT sensors

510 580/510 580



Excimer-based aptamer sensors

A

3 b " -— /M Aptamer: A DNA strand
Prsiestles S / that recognizes an analyte
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Fluorescence Intensity/aU

Excimer sensors
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Excimer sensors

Pyrene excimer
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This picture came from http://www.probes.com/handbook/boxes/0432.html



FRET sensors

Lipid mixing - relief of FRET
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This picture came from http://www.probes.com/handbook/boxes/0432.html



Transfer Efficiency (%)

FRET sensors — base pair separation
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