Fluorescent signal transduction principles

General issues of fluorescent detection

- Size of signaling unit (small organics vs. QDs)
- Molar absorptivity (ε) : how strongly a species absorbs light at a given wavelength
- Fluorescence quantum yield (Φ)
- Excitation wavelength ($\lambda_{\rm exc}$)
- Emission wavelength (λ_{em})
- Stokes shift
- Fluorescence lifetime
- Photostability (vs. photobleaching)
- Solubility

Signal transduction strategies

- Polarity probes
- Internal charge transfer (ICT) systems
- Photoinduced electron transfer (PET) systems
- Excimers
- Energy transfer systems

Effect of solvent polarity on absorbance

Solvent shell arranges randomly

After excitation it is conserved in an unbiased manner

Little stabilization effect

Effect of solvent polarity on fluorescence

Time scale is longer

Solvent relaxation stabilizes

Solvatochromism

Effect of solvent polarity on absorbance and fluorescence

Polarity probes

- Change in dipole moment
- Electron donating and electron withdrawing groups (push-pull)
- Blue- or red-shifts
- In general the spectrum is red-shifted in polar solvents

Signals

Signals

Internal charge transfer (ICT) sensors

- The primary excited state (locally excited) rearranges very fast to a charge separated species (large dipole
- Receptor and signaling units are integrated
- Principle is similar to solvatochromism, but more pronounced (definite charge is present)
- Charged guest will greatly influence the energy of the excited state (stabilize / destabilize)

Mechanism of action in ICT sensors

Both exitation and emission are affected (blue shifted here)

- When repulsive interaction is present, the guest will be ejected
- K_a in the ground and excited states will be different
- K_a ground state is measured using absorption, Ka excited state from fluorescence

Fluorescence response in the presence of cations : control (0), $Cd^{2+}(1)$, $Hg^{2+}(2)$, $Fe^{3+}(3)$, $Zn^{2+}(4)$, $Ag^{+}(5)$, $Co^{2+}(6)$, $Cu^{2+}(7)$, $Ni^{2+}(8)$, and $Pb^{2+}(9)$

Fluorescence changes upon addition of Hg²⁺ (0 μ M to 200 μ M) in 0.05 M phosphate-buffered water solution (pH 7.5) with an excitation of 390 nm.

Ca²⁺

Detecting small organics with ICT

- acts via different transduction pathways
- no charge present

•Rigidifies the sensors, fluorescence increases (less vibrational / internal conversion relaxation)

Photoinduced electron transfer systems

- Receptor and signaling units are separated
- Receptor and fluorophore make up a redox pair
- Redox properties are influenced by guest binding

Mechanism of action of PET sensors

- The electron donor in the receptor (reducing agent) reduces the excited state fluorophore
- fluorescence is quenched

Ca²⁺

Guest = gamma aminobutiric acid (GABA)

ON-OFF PET sensors

Redox active guests in PET sensors

Redox active guests in PET sensors

PET sensor

Redox active guest

Monomer-excimer systems

- Two or more fluorophores are needed
- $F + F^* \rightarrow [FF]^*$
- Excited dimer
- Diffusion controlled
- Homodimer (excimer), heterodimer (exciplex)
- Mainly hydrocarbon fluorophores (pyrene, anthracene etc.)

Energetics of excimer formation

- excimer band is always structureless and red shifted
- Monomer / excimer ratio is independent of concentration
- two-point-calibration

Excimer sensors

 In sensors: guest induced formation or dissociation

Energy transfer systems

- Two or more fluorophores are needed
- $A + D^* \rightarrow A^* + D$ (vs. Inner filter effect)
- Spectral overlap, transition moments
- Distance (<100 Å)

Energy transfer systems

- Short range (Dexter) mechanism : electron exchange between overlapping molecular orbitals (<10 Å)
- Long range (Förster) mechanism : coulombic interactions between opposed dipole moments

• ET depends on
$$E = \frac{1}{1 + (r/R_0)^6}$$

Energy transfer systems

- Förster type of energy transfer (FRET)
- Strongly distance dependent (molecular ruler)
- Enzyme kinetic measurements
- HOST-GUEST (receptor-ligandum)
- Membrane diffusion / fusion
- Conformational changes
- Colocalisation
- Imaging techniques (resolution increase)

GFP-based probes

