Sensor development using existing scaffolds

- Biological molecules (peptides, oligonucleotides, enzymes, antibodies)
- Synthetic macrocycles (crown ethers, cryptands)
- Cavitands: container shaped molecules (cyclodextrins, calixarenes, cucurbiturils)

Calixarenes

• Calixarenes (cyclic oligophenols)

Cyclodextrines

- Cyclodextrines (cyclic oligosugars oligoglucose); CDs
- Cavity size depends on the number of monomers
- α -cyclodextrin: 6-membered
- β -cyclodextrin: 7-membered
- γ -cyclodextrin: 8-membered

Cyclodextrines

Cucucrbiturils

- Methylene linked macrocyclic oligomers of glycouryl
- Cucurbit[n]uril n = number of monomers
- CB[n] or CBn
- 5, 6, 7, 8, and 10 repeat units have cavity volumes of 82, 164, 279, 479, and 870 Å³

Cucucrbiturils

Detection methods in chemosensing

General issues of detection

- Sensing : detection of an analyte
- Reception of guests is followed by signal generation by means of *signal transduction*
- Receptor unit : specificity, selectivity
- Signaling unit : sensitivity
- Signal : different means of energy

- Fluorescence
 - Very sensitive (micro-, nano-, femtomolar, one molecule
 - Temporal resolution (nanosecundum)
 - Spatial resolution (nm scale)
 - Relatively easy and cheap detection
 - Sensitive to contaminants, environment (pH, solvent temperature etc)
 - Stability
 - Toxicity

- Absorption (Colorimetric detection)
 - Cheap
 - Wider selection of chromophores
 - less sensitive (milli-, micro)
- Electrochemical detection
 - Sensitive
 - Cheap
 - Requires charged entities (electrochemically active species)

- Label free methods
 - Quartz crystal microbalance (QCM)
 - Surface plasmon resonance (SPR)
 - Both methods are sensitive
 - Provide information on affinity, kinetic and conformational data
 - Both requires immobilization on surfaces
 - Rather expensive instrumentation
 - Skilled operators

- Selecting the proper transduction strategy
 - Environment
 - Aims
 - Sensitivity
 - Limitations
 - Budget

Fluorescence detection

- Fluorescence is one way of energy dissipation (relaxation) from excited states
- Lowest energy electronic configuration defines the Ground state energy
- Statistically (Boltzmann) most molecules are at their ground state (S₀)
- S refers to singlet state (zero unpaired electron)
- T refers to triplet states (one unpaired electron)

- Excitation of molecules from ground state to excited states
- Excitation energy : light, electricity, heat, chemical/biological reaction etc.
- Absorption of energy quanta
- Different electron configurations (transitions can be e.g. $\pi \pi^*$; n- π^* etc. (HOMO-LUMO)
- Absorption process is very fast (10⁻¹⁵ s)

- From higher energy excited states energy dissipates very fast (10^{-13 -12} s): *deactivation, relaxation, quenching* of excited states (S_{1-n})
 - Vibrational relaxation (VR) (relaxation via transfer of vibrational energy)
 - Internal conversion (IC) (collisional decay, heat emission)
 - Non-radiative decays
- The lowest energy excited state (S_1) has a relatively long life-time (~10⁻⁹ s) excitation-relaxation process *stops* here for a while

- From S_1^0 there are several options for relaxation:
 - Vibrational relaxation to S_0^X
 - Vibrational relaxation in very special cases (overlapping vibrational levels)
 - Intersystem crossing to T_1^X (forbidden transition)
 - Chemical reaction (= photochemistry photobleaching)
 - Electron transfer (PET), proton transfer
 - Charge transfer (ICT)
 - Emission of a photon = FLUORESCENCE

Jablonski Energy Diagram

Radiative relaxation pathways

- Relaxation via emission of a photon
- Fluorescence : $S_1^0 \rightarrow S_0^X$
- Phosphorescence : $T_1^0 \rightarrow S_0^X$

Absorption and emission – mirror image principle

Intensity of bands – Franck-Condon principle

Terms related to fluorescence

- *Kasha's rule* : The emission spectrum observed is independent of the excitation wavelength (fast relaxations)
- *Stokes type fluorescence*: excitation is greater in energy than emission energy
- *Stokes shift* : the difference between the wavelength of absorption and emission maxima
 - The larger the clearer the specrum (mega-Stokes dyes)

Terms related to fluorescence

- *Fluorescence lifetime*, τ (lifetime of excited state)
 - 1/ e of original intensity after excitation
 - Length vs. ISC
 - possibility for O₂ sensing
- Quantum yield, $\Phi_{\rm F}$

-Photons emitted / photons absorbed

-non-radiative vs. radiative relaxation

 $\Phi \approx \frac{\kappa_{radiative}}{k_{radiative} + \Sigma k_{non-radiative}} \leq 1$

Detecting fluorescence in vivo

- Water and oxygen as quenchers
- Photobleaching
- Autofluorescence (Trp, nucleotides, porphyrins etc.) mega Stokes dyes

Fluorophores

- Organic
 - aromatic compounds
 - metal complexes
 - fluorescent proteins (e.g. GFP)
- Inorganic
 - Semi conductor quantum dots (QDs)
 - Upconverting nanoparticles (UCNPs)

Organic fluorophores

The Stokes shift issue

Fluorescein

The Stokes shift issue

Mega Stokes dyes

Fluorescence intensity, A.U.

Metal complexes

 $Ru(Bpy)_3$

Eu-complexes

A2083 ATBTA-Eu³⁺

Fluorescent proteins

Chromophore Structural Motifs of Green Fluorescent Protein Variants ECFP EBFP Trp66 Gly67 Gly67 His66 Ser65 Thr65 EGFP EYFP Tyr66 Gly67 Gly67 Tyr66 Gly65 Tyr203 Thr65 Figure 2

Semi-conductor quantum dots (QDs)

- Semiconductor nanocrystals of e.g. CdSe, CdS, ZnS etc.
- The band-gap between valence and conductive bands is inversely related to their size
- The smaller, the higher the energy of the emitted photon

Semi-conductor quantum dots (QDs)

Semi-conductor quantum dots (QDs)

One excitation wavelength can excite all ranges of size

Semi-conductor quantum dots (QDs)

- Very high quantum yield (close to unity)
- Excellent photostability
- Narrow emission bands
- Toxicity issues need to be coated
- Difficult signal transduction

Upconverting nanocrystals

- Rare-earth metals doped into crystal lattice of e.g. NaYF₄ or Y₂O₃
- At least two types of RE metals are needed as dopants
- Anti-Stokes fluorescence
- Low energy excitation (e.g. at 980 nm), visible, higher energy emission
- Sequential two photon excitation followed by energy transfer between the dopants
- RE metals have numerous closely spaced ladder-like relatively long stable energy levels – can be excited again from an excited state

Upconverting nanocrystals

- Excitation in the NIR region (water window)
- Enable deep tissue imaging
- Photostable
- Autofluorescence-free fluorescence (higher signal-to-noise)
- Sequential two photon excitation followed by energy transfer between the dopants
- RE metals have numerous closely spaced energy levels
- Non-toxic
- Coating needed for functionalization
- Difficult signal transduction
- Size should be below ~40 nm for sensor applications

